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We construct a candidate for the natural best L,-approximation to an integrable
function, j; by elements of an L,-closed convex proximinal set. If f is a Lebesgue
integrable function on [0, I] and the approximating set is the set of all non­
decreasing functions, we show that our construction gives an extension of the
known natural best L,-approximation operator from Up>, L p to L,. In the
course of doing this, we also complete the characterization, given in (Huotari,
Meyerowitz, and Sheard, J. Approx. Theory 47 (1986), 85-91) of the set of all
best L,-approximations. Finally, in the case of isotonic approximation to a
function of several variables, we extend a previous result concerning the almost
everywhere convergence of the best I'p-approximations, p> I, to the natural
best L I-approximation. 1988 Academic Press, Inc.

1. INTRODUCTION

Let (Q, 21, /l) be a finite measure space. For 1~ P < co, let
L p = LiQ , 21, /l) and let L[ + = Up> 1 L p • Suppose fELl and CeLl is a
closed convex set which is proximina/, i.e., for any g in L j , there is an
Lj-nearest point to g in C. Ifp~ 1 andfis in L p, let /lp(f, C) be the set of
all best Lp-approximations offin C, i.e., the set of all g in C with

Ilf - gllp = inf{ Ilf - hll p : hE C (\ L p }.
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NATURAL BEST L1-APPROXIMATION 133

If p > 1, it is well known that Ii)f, C) consists of a single function, which
we denote by fp.

An elementfl in Ill(f, C) is called a natural best LI-approximation offin
C if for each g in III (f, C), g i= fl' there exists p( g) > 1 such that

for all p in (1, p( g)). (1.1 )

By Proposition 4 and Theorem 2 in [3], condition (1.1) is satisfied by a
unique element,f" of 1l1(f, C),fl is the unique best LI-approximation off
in C minimizing

f If - glln If - gl dp (1.2 )

among all g in III (f, C), and

fp~fl in L 1 as p! 1. (1.3)

Define the operator N c: L I+ ~ C by N df) = fl' In this paper, we define
an operator N't:: L 1 ~ C. We conjecture that N't: = Neon L 1+. In the case
of isotonic approximation we show that this is so. (In a forthcoming paper
we will show that it is also true if C is the set of all functions measurable
with respect to an arbitrary sigma algebra.) In the case of isotonic
approximation on the unit n-cube, we show that the convergence in (1.3) is
pointwise almost everywhere.

2. A CANDIDATE FOR Ndf), f E L,

Let f be an arbitrary element of L,. Our goal in this section is to con­
struct a "natural" best LI-approximation to fin C. If N c were continuous
on L I +' the fact that the set of all simple functions is dense in L I would
make this an easy problem. The following example however, shows that N c

is not continuous.

EXAMPLE 2.1. Let Q = [0, 1] c IR, p = Lebesgue measure; let ~ be the
Il-measurable subsets of Q and C the set of all constant functions. Let
1=/[0.1/2]' i.e., I(x) = 1 if XE[O,!] and/(x)=O otherwise. For £>0, let
I" = 1[0.1/2+<]' Then III - 1"111 = £ but II ==! while I~ == 1. The same result
holds if, instead of constant functions, C consists of all nondecreasing
functions in L,.

For any functions g and h in L, , let g v h = max( g, h) and
g /\ h = min( g, h), and, for nonnegative integers m and n, denote the trun­
cations of g by goon = g /\ n, gmoo = g V (-m) and gmn = (g /\ n) v (-m).



134 HUOTARI ET AL.

We construct our candidate for a natural best L1-approximation to f by
considering truncations of f

For each pair (m, n) of nonnegative integers, fmn EL oo . Thus, fmn has a
natural best L1-approximation, !,;m, in C. Also, if n ~ k ~°and °~ m ~ I,
then

Since N c and the operators f -+ inf fJl (f, C) and f -+ sup fJl (f, C) are
monotone (see Proposition 5 and Lemma 3 in [3J), we have

sup fJl (f0oo, C) ~ f'['n ~ f'['k ~ fik~ inf fJl (fooo, C), a.e.

Thus for all integers n > 0,

lim fr = f'(m
j ---+ 00

and

exists a.e. (2.1 )

a.e. (2.2)

It follows from (2.1) and (2.2) and the dominated convergence theorem
that fin converges to ffn in L l' By Theorem 1 in [4J, ffn EfJl (foon, C).
Since f'['n ~ f'['k a.e. For n ~ k, we have limm~ 00 f'['n ~ limm~ 00 f'['k a.e., or,

a.e. for n ~ k. (2.3 )

From (2.2) and (2.3) we conclude that

lim ff) = ff
j- 00

and

exists a.e.

Again it follows from the dominated convergence theorem that

in LIas j -+ 00,

so Theorem 1 in [4J implies thatftEfJt(f, C). We summarize our results
in the following lemma.

LEMMA 2.2. If f ELI, then there exists an element f t of fJl (f, C) so that
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the natural best approximations to the truncations off converge in L 1 to fi;
that is

n-oo m-oo

We conjecture that fi = fl when fELl +.

3. THE NATURAL BEST ISOTONIC ApPROXIMATION

In this section we restrict our attention to the case where Q = [0, 1] c IR,
J1 = Lebesgue measure, m= all J1-measurable sets and C = M, the set of all
nondecreasing functions on [0, 1]. If p > 1 and f E L p , then

inf lif - gllp ~ Ilfllp
gEM

(since 0 EM), whence J1p (f, M) = J1p (f, M n L p ). The set M n L 1 is an L 1­
closed convex lattice with a( M n L 1) + b c M n L 1when a> 0, bE IR, so the
results in [3] apply. We will show that the construction in Section 2
provides an extension of N M from L 1+ to L 1.

We begin with a construction of inf J11 (f, M) and sup J11 (f, M). This
construction is of independent interest.

For each c in IR, define

f(x) ~ c

f(x) > C,

and kAx) = S~ hAt) dt. Then k c is a continuous function of x and, for each
x, kAx) is continuous from above as a function of c. Let

mc= min kc(x)
x

and

Xc = max{x: kc(x) = mc}.

Then Xc ~ Xd whenever c < d. Indeed, suppose that xc> Xd but c < d. Since
kc(xc)= kAxd)+ S~~ hAt) dt and kAxJ = kd(Xd)+ S~~ hAt) dt, it is necessary
that S~~ hAt) dt ~ 0 and S~~ hd(t) dt> O. Thus there exists t in [xd, xc] such
that hAt) > hAt), which contradicts the definition of hc. Thus, there exists a
unique function [which satisfies the condition

{x:[(x)~c}=[O,xc]' CEIR.

640/52 /2-2
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Similarly, let
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and

_ {-I,
hc(x) = 1,

kAx)=rIiAt)dt,
x

f(x) < c

f(x) ~ c,

M c= max kc(X),
c

Xc = min {x : kAx) = Me}

and let J be the function which satisfies the condition

{x:f(x)~C}=[Xn 1], CEIR.

THEOREM 3.1. For [ andJ as defined above,

[= inf /11(f, M) E /1 1(f, M)

Proof By Lemma 3 in [3], /11(f, M) is nonempty and contains
inf /11 (f, M). Let g = inf /11 (f, M). We wish to show that [= g. Since
[(0) = g(O) = -00, it is enough to show that [= g on (0, 1]. Suppose that
[(x) < g(x) for some x in (0, 1] and let C= [(x). Since g is left continuous
on (0, 1], [g~c] = [0, x*] for some x*<xc' Then ke(x*)~kAxc)' so

(3.1 )

where /1(A; B) denotes the relative measure of A in B, i.e., /1(A; B) =
/1(A n B)//1B. Since g is not constant at x*, (2) in [1] gives

/1([f<g]; [x*,xcJ)~!·

Since c< g on [x*, xc], (3.1) and (3.2) show that

/1([f ~ c]; [x*, xc]) =!

and

/1([c<f<g]; [x*,xc])=O.

(3.2)

We now will show that there is a function ¢J E M with Ilf - ¢JIll ~ Ilf - gill
and ¢J> g on [x*, xc], contradicting the choice of g. Let

¢J(x) = {c,
g(x)

X E [x*, xcJ
otherwise.
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We have seen that almost everywhere on [X*, xc], either I ~ c ~ g (so
hc = -1) or c< g~/(so hc =1). Thus

III - rPlll -III - gill =r (g(x)- c) h,(x) dx

I
X, Ig(X)

= x. c h,(x) dy dx

I
g(X,.) IX'

= c rl(y) h,(x) dx dy

where g-l(y)=inf{x: g(x)~y}. By definition of xc, the last integrand is
always nonpositive so 111- rPIII - III - gill ~ 0. Since rP < g on [x*, xc], we
have a contradiction, so [~g.

Suppose now that [(x) > g(x) for some x in (0, 1]. Let c = g(x) and let
[g ~ c] = [0, x*]. Then Xc < x ~ x* and k'(xJ < k,(x*) so

fi([f>C]: [xnx*]»~. (3.3)

Either x* = 1 or °< x* < 1. In the second case get) > g(x*) whenever
t>x*, so (3) in [1] implies that

(3.4 )

If x*=I, then (4) in [1] gives (3.4). Since g~c on [xnx*], (3.3) and
(3.4) are contradictory. Thus I ~ g, so 1= g.

The demonstration that J=-sup fil (1, M) is similar. This concludes the
proof of Theorem 3.1.

We now recall a characterization of fil(f, M) which was given in [1]. In
that paper [ and J were defined differently than they are here, but
Theorem 3.1 shows that both definitions give the same functions. Let V be
the union of all maximal open intervals on which J and I are constant and
unequal. In [1] it was shown that J =[almost everywhere on [0, 1] - V.
Define h: [0, 1] --+ IR by

Also let
1

1,

h(x)= -1,

0,

I(x) ~ J(x) > [(x)

f(x) ~[(x)<j(x)

otherwise.

k(x) = fa' h(t) dt. (3.5)
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As shown in [1], [k = 0]:::) ([0, 1] - U), ([k = 0] n U) has measure zero,
and for any g in M, g EIII (f, M) if and only if

(i) [~g~Jon [0,1] and

(ii) g is constant on each component of [k # 0].

The characterization in [1] was partial in that it was not shown how
inf III (f, M) and sup III (f, M) depend on f A by-product of Theorem 3.1 in
the present paper is that the characterization is now complete. It also
allows us to establish that Nt extends N M'

The following lemma will combine with property (1.2) of the natural best
LI-approximation to give our result. For notational convenience, we
denote fmn by Jmn and fmn by [mn for any nonnegative integers m and n.

LEMMA 3.2. Suppose f ELI and g EIII (f, M). Then for each pair (m, n)
of nonnegative integers gmn EIII (fmn, M).

Proof We first use Theorem 3.1 to describe [mn and Jmn and then use
conditions (i) and (ii) to show that gmn is in IlI(fmn,M). For each cEIR,
define k mn, k,;n, x,;n, x,;n, and umn in the same way that k, k", XC' X'" and U
are defined for f Then x,;n = 0 for c < -m, x,;n = Xc for -m ~ c < nand
x mn = I for c ~ n. Thus fmn = (f)mn on (0, 1] (fmn(o) = -(0). Similarly,
J;"n = (J)mn on [0, 1). Clearly [mn ~ gmn ~ Jmn on [0, 1J, since [~ g ~J

Let B be any component of [k mn # 0]. To complete the proof we must
show that gmn is constant on B. To that end, we observe that B is com­
pletely contained in one of the sets

In either of the first two cases gmn is surely constant on B. Finally,
examination of the definitions shows that hmn = h on (x_ m, x n) while
k(x_m)=kmn(x_m)=O, so kmn=k on A 3 • Thus, if B is a component of
[kmn # OJ n A 3 , it is also a component of [k # 0]. Since g is constant on B,
so is gmn.

Note that limn~CQ(1imm~CQgmn(x))=g(x)and Igmn(x)I~lg(x)1 for
each X in [0, 1], so gmn -+ g in Lt.

THEOREM 3.3. If fELl +' then ft = fl'

Proof It suffices to show that

f If - ftllnlf - ftl ~ f If- gllnlf - gl (3.6)
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for every g in JlI(f, M). Given g in JlI(f, M), let {gmn} be the sequence
guaranteed by Lemma 3.2. Then, for every m, n ~ 0,

Let m --+ CfJ and then let n --+ CfJ in (3.7) to get (3.6). This concludes the
proof.

Since the best LI-approximation we have constructed is the natural best
LI-approximation when f is in L I + , we have indeed extended the operator
N M from L I+ to L I .

4. ALMOST EVERYWHERE CONVERGENCE OF fp TO fl

In this section we generalize a result from [2] concerning the
convergence of the best Lp-approximations, p> 1, to the natural best
LI-approximation by nondecreasing functions.

For n ~ 1, let Q be the unit n-cube, [0, 1r. Let Jl denote n-dimensional
Lebesgue measure on Q and let mconsist of the Jl-measurable subsets of Q.

If x=(X I ,X2 , ...,xn) and Y=(YI> Y2, ..., Yn) are elements of Q, we write
x ~ Y if Xi ~ Yi for 1~ i ~ n. A function g: Q --+ IR is said to be nondecreasing
if x, Y in Q and x ~ Y imply that g(x) ~ g( y). Let M consist of all non­
decreasing functions. Let f E L q and, for 1 < p < q ~ C/J, let Jlp(f, M) = Up}.
In [2] it was shown that, for f E Len, as p decreases to one, f p converges
almost everywhere to fl, the natural best L)-approximation to f by
elements of M. We now show that this result is also true if f is only
assumed to be in L 1+ .

LEMMA 4.1. If {gk: k> I} eM and gk --+ gl in L I , then gk --+ gl almost
everywhere.

Proof Since a subsequence of {gk} converges to g I almost everywhere,
gl EM. By Theorem 1.1 in [2], gl is continuous almost everywhere. If
Lemma 4.1 were false, there would be a point Y in the interior of Q at
which gl is continuous but gk( y) does not converge to gl( y). Since
{gk(y)} has a subsequential limit d#gl(y) and since any subsequence of
{gk} converges in L I to gl, we may suppose that gk(y) --+ d. The argument
for d< gl(y) is similar to that for d> gl(g), so we give only the latter: Let
d* = (d + gl (y) )/2. Since gl is continuous at y, there exists a point z> y
such that for each x in the set

J= {x: YI <XI <ZI' ..., Yn <x" <z,,},
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gl(x)<d*. Since there exists K such that for each k?-K, gk(y»d* and
since each gk is nondecreasing, we have

r(gk - gl) dx>r(d* - gl) dx>O
y y

for every k?- K, a contradiction. This establishes Lemma 4.1.

THEOREM 4.2. If ELI +, then I p converges almost everywhere as p
decreases to one to the natural best L1-approximation to I in M.

Proof By Proposition 4 and Theorem 2 in [3], I p -> II in L I as p
decreases to one. We may now apply Lemma 4.1.
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